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ABSTRACT
An extender is defined to be an active manipulator worn by a

human to increase his strength [6]. The human, in physical contact
with the extender, exchanges power and information signals with the
extender. The human arm, the extender, and the environment
comprise the dynamic model of the extender system. In this paper,
an expression for system performance is derived to determine the
force augmentation of the extender. The stability and the
performance of the extender are proven via simulation and via
experiments with a single-degree-of-freedom hydraulic extender.
The trade-off between performance and stability is discussed: the
better the required performance (larger force amplification in this
experiment), the narrower the stability range is.

An experimental extender is shown in Figure la. The
human arm, wrapped in a cylinder of rubber for a snug fit, is located
in the inner tube. A piezoelectric load cell, placed between the tubes,
measures the interaction force between the human arm and the
extender. Another piezoelectric force cell, set be ween the extender
and the environment, measures the interaction force between the
extender and the environment. A rotary hydraulic actuator,
mounted on a solid platform, powers the outer tube of the extender.
The actuator shaft, supported by two bearings, is connected to the outer
tube to transfer power.

This article establishes experimentally-verified ground
rules for control of human-machine interaction in the sense of
transfer of power and information signals. Human-extender
interaction and its dynamic behavior are described. A
mathematical description of extender perfo~ance is derived. The
stability of the human-extender-load system is.analyzed. The trade-
offs between perform~ce and stability are exlftl:lined.

2. DYNAMIC BEHAVIOR OF THE EXTENDER
If an extender has elements with significant dynamic

behavior, such as hydraulic actuators or transmission systems,
rigid-body dynamics [5] can not sufficiently represtlnt the extender
dynamic behavior. In the modeling approach taken here, the
dynamics of the extender elements are implicitly included in an
unstructured model by focusing on the input and output properties of
the extender.

The extender position,. Y., is an nx1 function of two variables:
the electronic command to the extender drive system and the
external forces imposed on the extender. It is assumed that the
extender has either a closed-loop velocity or closed-loop position
controller. This controller, called a primary stabilizing
compensator in this article, is chosen because the extender must be
stable when no one is wearing it and because robustness in the
extender can be created without considering human and object
dynamics.

Regardless of the type of primary stabilizing compensator, it
is assumed that the extender position Y. is the extender model output,
u. is the input electronic command to the primary compensator!, fell
is the force imposed by the human on the extender, and fen is the

1. INTRODUCTION
A robot manipulator's performance of physical tasks depends

on its actuator torque: a small actuator can supply a large torque.
Human performance of physical tasks is limited, not by human
intelligence, but by human physical strength. However, human
mechanical power can be integrated with robot mechanical power
under the control of the human intellect in the class of robot
manipulators called "extenders". Extenders use actuator power to
extend human strength while maintaining human control of the
task. The human wears the extender on his arm and feels a scaled-
down version of the load carried by the extender. Such physical
contact allows direct transfer of information signals and
mechanical power between the human and the extender. This direct
transfer distinguishes the extender from conventional master-slave
systems because control of the extender trajectory can be
accomplished without a joystick, keyboard, or other master-slave
device. Instead, input to the extender is derived from the human-
extender contact forces which are measured, modified to satisfy
performance and stability criteria, and fed to the extender
controller.

The concept of a device to increase the strength of a human
operator using a master-slave system has existed since the early
1960s and was originally named "man-amplifier" [1,2,3,4,
12,14,15,16,17]. The man-amplifier was defined as a manipulator
which would greatly increase the strength of a human operator while
maintaining human control of the manipulator. These early
systems were based upon the master-slave concept rather than upon
direct physical contact between human and manipulator.

1 If the primary compensator is a position controller, then ue is the
position reference and 6'e follows ue according to the employed
control law. If the primary compensator is a velocity controller. then
Ye .the extender velocity. follows Ue according to the employed
control law.



force imposed by the environment (the object being manipulated) on
the extender. The following equation summarizes the extender
dynamic behavior:
'.Ie = Ex (Ue' feh' fen) (1.)

If a position controller is selected to be the primary stabilizing
compensator, mapping 1 is stable. However, if a velocity controller
is selected to be the primary controller, the extender position is not a
stable function of the extender inputs. The following norm
inequality can be defined by taking the truncated L2norrns of both
sides of equation 1:

IIYe,TI12( lXuell ue,TI12+ lXfeh II feh,TI12+

lXfen II fen,TII2+ !lye VteT (2)

positive direction of fen is defined to be from the environment to the
extender, the constraining force of -[CYe+ K Ye].. where Ye is the
extender position, is imposed on the extender.

If En' a nonlinear operator, is the environment dynamics,
and f ext is all external forces on the environment, a general
expression for f., as a function of Ye is:

fen = text -En (Ye) (5)

It is not clear if the environment is an L2 stable function of Ye.
Similar to the extender dynamic behavior, mapping 5 is assumed to
be bounded within any bounded interval T. The following noTtn
inequality can be defined by taking the L n2 norms of both sides of
equation 5:

II fen,T 112 < &xt:n II Ye,TII2 + Ilfext,TII2+ ~fen 'v'teT (6)

where aEn and ~fen are positive constants.
In the example of Figure la, En is equal to the environment

impedance (K + CsJ. Figure 1b shows another example where the
extender is manipulating mass m with acceleration .;j e' If the
direction of fen is defined as from the environment to the extender,
the constraining clockwise torque of [m Len2.;je+ mgLenCos[YeJ],
where Ye is the angular orientation of the extender, is imposed on the
extender. En(.J in this example is a nonlinear function such that
E.(YeJ = [m L.n2.;je+ mgl.enCos(YeJ] and f.xt = O.

where C)(ue, C)(feh, C)(fen, and l3~e are positive constants and Ye, T, Ue, T,
feh,T' and fen,T are the truncated functions2.

3. DYNAMIC BEHAVIOR OF THR HIJMAN ARM
The behavior of the human arm is modeled here as a

relationship between inputs and outputs so that the dynamics of nerve
conduction, muscle contraction, and central nervous system (CNS)
processing are implicitly considered. The focus is on constrained
maneuvers of the extender in which the environment continuously
exerts a dynamic constraint on the extender and thus on the human
arm. No particular type of control action (force or velocity or
-position) is attributed to the arm since it is not certain which of these
types is commanded by the CNS- Thus, to arrive at a general model
for the human-extender dynamic behavior, a Norton equivalent
concept is used. Modeling the human arm with such an equivalent
does not affect the arm's interaction with other systems.

The Norton equivalent models the human arm dynamic
behavior as a non-ideal source of force interacting with other
systems. "Non-ideal" indicates the arm responds both to position
disturbances from the extender and to force commands from the
CNS. The force between the extender and arm results from two
inputs: u." issued by the CNS, and extender motion (position and/or
velocity), if such motion occurs. Uh is human thought deciding to
impose the force of feh- Sh' which represents the disturbance
Tejection property of the human arm, maps Ye into f eh' The
foIlowing equation represents the human arm dynamic behavior:
f eh = Uh -Sh (Ye) (3)

Since it is assumed that the human arm is stable, the following norm
inequality can be defined by taking the L"2 norms of both sides of
equations 3:

II f eh 112 < II Uh I~ + ()( Sh II Yo 112 + ~feh (4)

where ()(Sh and ~feh are positive constants.

4. DYNAMIC BEHAVIOR OF THR RNVTRONMRN'I'
The extender can either manipulate heavy objects or impose

large forces on objects. Figure la shows a single-degree-of-freedom
prototype extender pushing against a compliant element. If the

-
2 If II \,Ie Ii:;? (00, then \,leE L n2' which implies that \,Ie is L n2-stable .

In cases where the norm may approach infinity, a truncated function
\,Ie, T is defined as:

Ye, T= Ye, t~T
Ye, T= °, t>T

If IIYe,rlb (00, then Ye belongs to the extended Ln2-space denoted
by L n2e' This definition facilitates the analysis of systems in which
the subsystems are unstable while the entire system may be stable.
Although mapping 1 may not be L2 stable, inequality 2 assumes that
within any limited time, T, the extender position will be bounded
whether the extender primary controller is a position controller or a
velocity controller.

Figure 1: a: The force imposed on the extender from the
enVironment is an upward force of -(K + Cs)Ye' b: The torque
that constrains the extender motion in a free maneuver is a

clockwise torque of [m~en2iJe+ m9~enCOS(Ye)]

5. DYNAMIC MODEL OF THE EXTENDER- HUMAN AND
ENVIRONMENT

The total dynamic behavior of the extender, human, and
environment is shown in Figure 2. If ue, Uh' and fext are zero, fen
is zero. If Uh alone takes on a nonzero value because the human
decides to move his hand, then an extender motion develops from



feh. This motion may be small if (Xfeh is small even if feh is large:
the human arm may not have the strength to overcome the extender
primary closed-loop control. To increase the human's effective
strength, the extender's apparent sensitivity is increased by
measuring f eh and filtering it through the compensator H,. The
compensator output is an input command Ue to the extender.
Similarly, compensator H2 generates extender compliancy in
response to fen. H, and H2 must be chosen to ensure stability for the
closed-loop system.

P(.) and R(.) are arbitrary nonlinear target dynamics. The first
equation, which is the most natural design specification for
extenders, allows the designers to specify a relationship between the
forces feh and fen' The second relationship establishes an
impedance for the extender. The following describes two design
examples in which only one design specification is of interest.

I. ShaDin~ th" Fnrc"
Suppose the purpose is to guarantee a relationship between the

forces feh and fen (equation 7) without concern for the relationship
between f eh and Ye (equation 8). Since only one relationship is
specified, there may be infinite choices for H, and H2. The choice
suggested here ensures ease of implementation. (Refer to
experiments for a discussion on implementation.) A trajectory
controller can be designed so that (Xfen and (Xfeh are small gains
and Ex creates an approximately unity gain from Ue to Ye. This can
be achieved by implementing a position controller that creates a
large open-loop gain in the system. For example, if several
integrators are used in the extender primary controller, then (Xfeh
and (Xfen are small which results in small extender response to feh
and fen. The governing dynamic equation when the primary
controller is insensitive to f eh and fen is:
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Figure 2: Compensators HI and H2 increase the apparent
sensitivity of the extender to forces from the human and

from the environment.

6 PERFORMANrF
This section addresses the following ques~ion: What

dynamic behavior should the extender have in performing a task?
The resulting performance specification does not assure the stability
of the system in Figure 2 but does let designers express what they
wish to have happen during a maneuver if instability does not occur.
(Section 8 shows that designers must accept a trade-off between
performance and closed-loop stability.) The following example
describes a performance specification for the extender. Suppose the
extender is employed to manipulate an object through a completely
arbitrary trajectory3. It is reasonable to ask for an extender
dynamic behavior where the human feels the scaled-down values 0;"
the forces on the extender: that is, the human has a natural sensation
of the forces required to maneuver the load. In other words, the
human would feel the scaled-down values of the acceleration,
centrifugal, coriolis, and gravitational forces associated with an
arbitrary maneuver. This example calls for masking the dynamic
behavior of the extender, human, and load via the design of HI and
Hz such that a desired relationship is guaranteed between feh and
fen. Without any proof, it is stated that only ~ relationships
~ feh. fen. ~e needed to specify a U~rque behavior for
the extender. If two relationships. one between en and feh and one
between feh and Ye, are specified, then the relati nship between fen
and Ye cannot be specified. Therefore, the objec ive is to choose H,
and Hz so that two independent relationships ~an be established
among feh' fen, and Ye. The following equation~ are suggested as
the two target relationships: lo"", t \t:v
feh = P(fen) (7)

H2 (fen) = -E,,-1 (-fen) (11)

En-1 (-fen) is the solution of the environment dynamic equation for a
given -fen; '=Ie must be calculated from equation 5 for any given -
fen' Substituting H, and H2 (equations 10 and 11) into equation 9
results in equation 12.
'=Ie ~ -En-1 (-fen) + 2 En-1 (-P-1(feh)) (12)

Since \Je = En -1 (-fen)' then:

En-1 (-fen) ~ -En-1 (-fen) + 2 En-1 (-P-1(feh)) (13)

and, consequently:

feh~ P (fen)' (14)

In an example illustrating the above case, an extender is
used to hold a jackhammer. The objective is to de~rease and filter
the force transferred to the human arm so the human feels only the
low-frequency force components. This requires that f eh = -
cxM[s) fen where, preferably, M[s) is a diagonal matrix with low-
pass filter transfer functions as members. cx is a scalar smaller
than unity and represents the force reduction. Choosing P[s) = -cx
M[s), the required forms of H, and H2 are as follows:

H1 (feh) = 2 En-1 ( L M-'(s) feh ) (15)
(X

H2 (fen) = -En-1 (-fen) (16)

Substituting H1 and H2 from equations 15 and 16 into equation 9
results in f eh '" -(XM(s) f.,. The above method calls for the class of
p functions that are exactly invertible or at least can be inverted
approximately. For example, if M(S) is chosen as a first-order
filter, then M-1(s) in equation 15 can be realized for a bounded
frequency range.

II. Shal!in~ the Imnedance
Suppose the purpose is to guarantee a relationship between the

forces feh and Ye (equation 8) without any regard to the relationship
between f eh and fen' Again, a trajectory controller can be designed
so that (Xfen and (Xfeh have very small gains and Ex creates an
approximate unity gain from Ue to Ye. Therefore, equation 9 governs

feh = R(Ye) (8)

3 For clarity in understanding the concept of perfonnance, it is
assumed that text on the object is zero. The equations derived in this
section can be extended to cases where f ext is not zero.



illustrate the trade-off between stability and perfonnance, a simple
case is considered where a high gain positioning system is designed
as the primary compensator such that (Xfen and (Xfeh are rather
small. The stability condition for small (Xfen and (Xfeh reduces to:

(Xue (XH1 (XSh + (Xue (XH2 (XEn < 1 (27)

HI and H2 represent the perfonnance of the system. For example,
when a larger HI is chosen for equation 15 (by choosing a smaller
(X), a larger torque amplification can be achieved. Designers,
however, may not freely select HI: inequality 27 must also be
guaranteed. If (XEn is chosen to be zero, the stability condition applies
to free maneuvers when the robot is not in contact with any object.

(Xue (XH1 (XSh < 1 (28)

the dynamic behavior of the system. Suppose H1 and H2 are chosen
such that:

H1 (feh) = 2 R-1(feh) (17)

H2 (fen) = -En-1 (-fen) (18)

Substituting H1 and H2 from equations 17 and 18 into equation 9
results in equation 19.

Ye~ -En-1(-fen)+2R-1(feh) (19)
Since Ye = En-1 (-fen), then equation 19 results in equation 20.

Ye~ R-1(feh) (20)

Equation 20 guarantees that the target impedance in equation 8 has
been achieved.

In an example for this case, the goal is to feel the forces
resulting from maneuvering a point mass when maneuvering a
rigid body. This behavior requires masking the cross-coupled forces
associated with rigid body maneuvers. This behavior is
characterized by feh = D(s]Ye where D(s] is a diagonal matrix with
second-order functions as members and s is the Laplace operator.
For a two dimensional maneuver, D(s] is shown in equation 21
where m 1 and m 2 are chosen to be the "apparent masses" in two
directions.

m1s2 0
O[e) = (21)

m2s20

Equation 21 guarantees a natural sensation of the forces used to
maneuver a point mass. Choosing H,[6) = 2 0-1[6) and H2 [fen) =
-En-I [-fen) and substituting them in equation 9 results in feh ~
0[6)Ye'

Inequality 28 states that guaranteeing stability of the closed-loop
system requires some initial compliancy in the human arm. If the
human hand has a large sensitivity to position disturbances (i.e.; it
rejects position disturbances by moving very quickly), then the
system stability can be guaranteed by a small H,. Large ~ implies
a stiff human arm and, theoretically, as (XSh -+ 00, the stability of the
closed-loop system can no longer be guaranteed. More trade-offs
between performance and stability are described in Section 9.

8. CLOSED-LOOP STABILITY (LINEAR ANALYSIS)
Using transfer function matrices, the linear dynamic

behavior of the extender, human, and environment can be described
by equations 29, 30 and 31.

Ye = Ge[s)ue + Seh[s]feh + Sen[S]fen (29)

fen[s] = -En [s]Ye + fext (30)
feh = -Sh[S]Ye + Uh (31)

where Ge represents the closed-loop transfer function for the extender
and Seh and San represent the extender sensitivity transfer
functions in response to forces f eh and fen' Using Multivariable
Nyquist Theorem, inequality 32 can be used for the stability analysis
[8,11].
O"max[GeH,Sh + GeH2En] < O"mln[J + Seh Sh+ SenEn] (32)

If a high gain positioning system is designed as the primary
compensator for the extender, then San and Seh are rather small and
the stability condition reduces to:

O"mex[GeH,Sh + GeH2En] < 1 for all c.> e [0, 00) (33)

7. CLOSED-LOOP STABILITY
A sufficient condition for stability of the closed-loop system of

Figure 2 is developed by the Small Gain Theorem. This sufficient
condition results in a class of compensators which guarantee the
stability of the closed-loop system in Figure 2. Note that the stability
condition derived in this section does not give any indication of
system performance, but only ensures a stable system. This stability
condition also clarifies the trade-off between performance and
closed-loop stability. (Refer to reference 17 to understand the
mathematical notation used in this analysis.) Suppose H, and H2
are chosen as nonlinear operators such that H,. H2: L n2e --t L n2e
and:
II H1(feh,T) 112 < CtHI II feh,T 112 + ~H' (22)

(23)II H2(fen,T) 112< 'XH211 fen,TII2+ ~H2

Inequality 33 is similar to inequality 27. For a single-degree-of-
freedom extender, the stability condition of 32 reduces to:

1 GeH,Sh + GeH~Enl <
11 + Seh Sh + SenEn I for all <A> e [0, 00) (34)where (XH1. (XH2. ~H' and ~H2 are positive constants. Since u. =

H,(f.h) + H2(f.n) :

II Ue,T 1100< tXH111 feh,TII2 + tXH211 fen,TlI2+ ~HI + ~H2 (24)

Substituting Ilfeh',TI12' IIfen,TlI2' IIue,TII2 from inequalities 4,
6, and 24 into inequality 2 results in inequality 25 for II Ye1l2:

IfH2 is chosen to be zero, then:
I I 1 I 1 S.nEn IH1 ( rG:I Seh" S;" -s-;:- for an (A) e [0, ~) (35)

If the extender is not in contact with any load (En- 0), the stability
condition reduces to:

(36)for all", e [0, ~)
II Ye,T 112 < (Q'fehQ'Sh+ Q'fenQ'En+Q'ueQ'H1Q'Sh+ Q'ueQ'H2Q'En)
II Ye,TII2+ (Q'H1 Q'ue+ Q'feh) Iluh,TlI2 + (Q'H2 Q'ue + Q'fen)

Ilfext,TlI2 + (Q'feh+ Q'ue Q'H1)~f.h+ (Q'fen+ Q'ue Q'H2)~fen+

Q'ue (~H1 + ~H2) + ~ye (25) Inequality 36 states that, to guarantee the stability of the closed-loop
system, there must be some initial compliancy in either the human
arm, 1/Sh' or the extender primary control system, Seh. Loosely
speaking, Sh represents the human hand stiffness. The system
stability cannot be guaranteed if Seh is very small (i.e., a stiff
extender) and the human hand has infinite sensitivity to position
disturbances (ie., the human hand has a very large ~ and it does
not reject position disturbances by moving very quickly).
Inequality 36 also shows that the system has a sma]Jer stability
range when no load is in contact with the extender. Therefore, if the

Employing the Small Gain Theorem, the closed-loop system of
Figure 2 is L2 stable if:

(26)rxfeh rxSh + rxfen rxEn + rxue rxH1 rxSh + rxue rxH2 rxEn < 1

Inequality 26 expresses the stability condition of the closed-loop
system in Figure 2. By inspection of inequality 26, it can be observed
that the smaller H, and H2 are, the larger the stability range is. To



Equations 37 and 38 are the experimentally verified transfer
functions for Gp and Gd4. Appendix A describes their detailed
theoretical and experimental derivations.

Using K1 = .94 and K2 = 0.00977 yields the widest bandwidth for
the closed-loop transfer function, Ge. and guarantees the stability of
the system in the presence of bounded unmodeled dynamics in the
extender [7]. From Figure 3, an expression for Ge is derived in
equation 39. Figure 4 depicts the theoretical and experimental values
for the Bode plot ofGe.

Ge = !i!. = ~3 ~i -rad/rad (39)
ue S S S

18860+ 530.52 + 11:83 + 1
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extender is stable without any load, it is also stable for all possible
values of the environment dynamics.

According to the results of section 6, the performance of the
extender is determined by the chosen values of H,. The larger H, is
chosen to be, the smaller the ratio of feh to fen is. Loose]y speaking,
large H, allows the human to manipulate large objects or to impose
large forces onto the environment. On the other hand, the stability
conditions given above require small values for H, to guarantee the
stability of the system. This trade-off between stability and
performance is illustrated experimentally in the next section.

9. EXPERIMRNTAI, RX'rRNnRR
A sing]e-degree-of-freedom extender (Figure 1a) is used to

verify experimentally the theoretical predictions for extender
stability and performance. This experimental extender consists of
an outer tube (39.5 ]bt) and an inner tube. The human arm, wrapped
in a cylinder of rubber for a snug fit, is located in the inner tube. A
piezoelectric load cell, placed between these tubes, measures the
interaction force between the human arm and the extender, feh'
Another piezoelectric force cell, set beween the extender and the
environment, measures the interaction force between the extender
and environment, fen' A rotary hydraulic actuator, mounted on a
solid platform, powers the outer tube of the extender. The actuator
shaft, supported by two bearings, is connected to the outer tube to
transfer power. In addition to the piezoelectric load cells, other
sensing devices include a tachometer and an encoder (with a
~orresponding counter) to measure the angular speed and position of
the motor shaft. An automobile strut, mounted on a custom fixture
below the extender, is the experimental environment. An IBM/AT
computer is used for data acquisition and control. Based on the
information from these sensors, a control algorithm calculates a
command signa] which is sent to the extender servo controller board
via a digita]-to-ana]og (D/A) converter.

Figure 3 shows a position controller as the primary
stabilizing controller for the extender. The closed-loop position
controller, Ge(s), from Ue to the extender position Ye is governed by
position and velocity feedback gains. Gp(S) and Gd(S) are the
transfer functions of the open-loop extender that show how the
extender responds to the input current, I, and the forces, fen and fQh.
The moment arm leh, representing the effect of the human force, is
about one-third of len. The servo controller board, with a gain of ~,
outputs a current proportion a] to the command voltage, resulting in a
displacement of the servova]ve spool. The extender velocity is
measured for feedback by a tachometer with a gain of Kt and is fed to
the computer by an ana]og-to-digita] convertor with a gain of Kad'
The extender position is measured by an encoder via a parallel 10
board with a gain of Klo, The pre-compensator Ko is used as a
constant gain to change the input units. K, and K2 are position and
ve]ocitv lZains and Kda is the digita]-to-ana]og convertor gain.
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Figure 4: The Experimental and Theoretical Bode Plot of
Ge. The extender position closed loop has the bandwidth of

about 10 Tad/sec.

Figure 3: Block Diagram of the Closed-loop Position
Controller, Tachometer gain: Kt=0.169 volts/(rad/sec),
Servo controller board gain: Kb= 0.00465 ampere/volt,

Digital to Analog Convertor: Kda=10 volts/2048,
Analog to Digital Convertor: Kad=2048/1.25 volts,

Parallel 10 gain: KIo=1592 number/rad,
Pre-compensator gain: Ko=1592 number/rad,

Position gain: K 1 =.94, Velocity gain: K2 = .00977

Sen is defined as the sensitivity of the extender position '.Je to fen
applied at a moment arm of Len = 3'. Seh is defined as the sensitivity
of the extender position to f eh applied at a moment ann of l.eh =1'. By
inspecting the block diagram of Figure 3 and substituting the
parameter values, Sen can be found as follows:

s
-+1

'.Je 23.6Sen = -f = 0.00004 ~3 ~2 -rad/lbf (40)
en S S S

1""8860 + 530.52 + 11-:8'3 + 1

Since the human arm force affects the extender about three
times less than the environment force, Seh is about three times less
than Sen.

4 Hereafter, the arguments for all transfer functions willl:~ omitted.



11. HUMAN ARM DYNAMY~ ANALY.qy.q
The model derived here does not represent huma arm

sensitivity, ~, for all configurations; it is only an approxima e and
experimentally verified model of the author's elbow i the
neighborhood of the Figure la configuration. The extender otion
Ye in the case of this prototype, is a rotating motion about the elbow
joint. If the human elbow behaves linearly in the neighborhood of the
horizontal position, Sh is the human arm impedance. F r the
experiment, the author's elbow was placed in the extender, a d the
extender was commanded to oscillate via sinusoidal functio s. In
each frequency of the extender oscillation, the operator tried move
his hand and follow the extender so that zero contact forc was
created between his hand and the extender. Since the huma arm
cannot keep up with the high frequency motion of the extender when
trying to create zero contact forces, large contact force and
consequently, a large ~ are expected at high frequencies. Sin e this
force is equal to the product of the extender acceleration and uman
arm inertia (Newton's Second Law), at least a second-order tr nsfer
function is expected for ~ at high frequencies, On the o~her h nd, at
low frequencies (in particular at DC), since the operato can
comfortably follow the extender motion, he can always est blish
almost zero contact forces betwen his hand and the extender. This
leads to the assumption of a free derivative transfer function fo ~ at
low frequencies where contact forces are small for all val es of
extender position. Based on several experiments, at v rious
frequencies, the best estimate for the author's hand sensiti 'ty is
presented by equation 43.

Sh = .143 s2 + s lbf/rad (4 )

Equations 46 and 47 are improper transfer functions. For
implementation on the computer, two high frequency poles are added
to each of the transfer functions of equations 46 and 475. The above
values of H 1 and H2 result in f eh = -tX fen' The designer cannot
arbitrarily choose ex; in order to guarantee system stability, tx must
be chosen to guarantee inequality 34. However, if tx is small (large
force amplification), inequality 34 is violated at some frequencies,
and no conclusion about stability can be made. Figure 6 depicting
both sides of inequality 34 shows that for guaranteed stability of the
closed-loop system, tx must be larger than .143.

In the first set of experiments, tx is chosen to be 0.5 to satisfy
inequality 34, and it is shown that the closed-loop system is stable.
The basic procedure for the experiment consisted of using the
prototype extender to push on the fabricated environment in a series
of periodic functions. The forces f eh and fen were measured and
recorded in data files. The recorded f eh was used as an input to a
computer simulation encompassing the dynamic behavior of the
extender, human, and environment. Figure 7 shows the simulated
and experimental values of fen along with the recorded value of feh
for three different maneuvers when tx is chosen to be 0.5 (twice force
amplification). The experimental data and theoretical predictions
are in close agreement. The first two plots are obtained using a low
frequency human arm motion. This demonstrates the linearity
between the input feh and the output fen. Note that the output force fen
is consistently twice the input force f eh' The second set of
experiments was conducted with tx = 0.03 , where the system exhibits
instability in the form of oscillations (Figure 8). Inspection of
Figure 6 shows that the choice of tx = 0.03 violates inequality 34. The
trade-off between performance and stability can be observed here:
the better the required performance (larger force amplification in
this experiment), the narrower the stability range is. Since
inequality 34 is only a sufficient condition for stability, violation of
this condition does not lead to any conclusion. Figure 9 shows the
experimental and simulated contact forces when tX-O.1 (force
amplified by a factor of 10). The system is stable and fen is
consistently ten times larger than the force feh' but the stability
condition is not satisfied.
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Figure 7: Stable maneuver with ()[ =.5 (twice force
amplification) a: f eh- b: experimental fen- c: simulated

fen

Figure 9: With cx =.1 (ten times force amplification),
H1 and H2 violate the stability condition; however, the

system is stable.
a: f eh. b: experimental fen, c: simulated fen



PI

\:Ie

Om
J

Pe
Vt

load pressure, psi
angular position of the extender, Tad
actuator volumetric displacement, 7.62 in3/rad
outer tube moment of inertia, 38.8 in-Ibf-sec:z.
hydraulic fluid modulus of elasticity
total contained volume in actuator, 13.3 in3

Eliminating PI and ~ £Tom equations Al, A2, and A3 gives
Equation A4, a transfer function for the angular position of the open-
loop extender, l:Jeo
\:I. = Gp I + Gd fen Len + Gd f eh l..h (A4)

where:

~
~ 1,Gp = Om 5[ 52 + ~ + 1)

-;:;:z we

K 4 ~.Kp T I

Gd = ~
D ( 62 21;.6 1)m 6::2+_+

00. 00.
and

Figure 8: Unstable maneuver with (K = .03 (thirty times
force amplification), H, and H2 violate inequality 34. a:

f eh. b: experimental fen' By fitting Gp into an experimentally-derived Bode plot
(Figure A2), the following parameters are derived:

13. SUMMARY AND CONCLUSION
This paper discusses the constrained motion in a class of

.human-controlled robotic manipulators called extenders. Extenders
amplify the strength of the human operator, while utilizing the
intelligence of the operator to spontaneously generate the command
signal to the system. A sing.le-degree-of-freedom extender has been
built for theoretical and experimental verification of the extender
dynamics and control. System performance is defined as
amplification of human force. It is shown that the greater the
required amplification, the smaller the stability range of the system
is. A condition for stability of the closed-loop system (extender,
human and environment) is derived, and, through both simulation
and experimentation, the sufficiency of this condition is
demonstrated.

K
~ = 355 (rad/sec)/arnp,

We = 39.5 rad/sec
'e = 0.45

Using the above data, Gp is given by equation AS.

rad/amp (A5)
G 355

p= ~2 ~6( 6 6
1560.25 + 43:89+ 1)

APPENDIX A
Figure AI shows the internal block digram of the open-loop

extender. The current, i, is the command input to the hydraulic
servovalve which allows the flow of hydraulic fluid to the rotary
actuator. feh and fen are the forces imposed on the extender by the
human and by the environment.

The dynamics of the hydraulic servovalve and rotary
actuator system are described by equations Al, A2, and A3 [13].

(AI)

(A2)

(A3)

QI = Kq 1- Kp PI (valve equation)

dYe Vt dPI ...~ = -at Dm + ~-at (flow contInuIty equatIon)

d2yPIDm + fenLen+ fehLeh = J ~e- (Newton's Law)
dt2

where fen. Len. feh. and Leh are defined in Figure la and the other
parameters are as foJlows:

load flow, in3/sec
flow gain, (in3/sec)/amp
current to drive servo valve, ampere
pressure gain, in5/(sec lbf)

QI
Ka

Experimental Data and Theoretical Gp.KD Figure A2:



K
?2 was determined to be 135x10-7 (rad/sec)/(lbfoinch).

m
Using the values stated for Vt. ~e. and Om. the numerical value for Gd
is given by expression A6.

Gd = 135)(10-7 _..2 - rad/(lbf.inch) (A6)
+ 1)

s
~+1

REFERENCES
1) Clark, D.C. et al., "Exploratory Investigation of the Man-

Amplifier Concept", U.S. Air Force AMRL-TDR-62-89, AD-
390070, August 1962.

2) GE Company, "Exoskeleton Prototype Project, Final Report on
Phase I", Report S-67-1011, Schenectady, NY, 66.

3) GE Company, "Hardiman I Prototype Project, Special Interim
Study", Report S-68-1060, Schnectady, NY, 1968.

4) Groshaw, P. F., "Hardiman I Arm Test, Hardiman I
Prototype", Report S-70-1019, GE Company, Schenectady, NY,
1969.

5) Hollerbach, J.M., "A Recursive Lagrangian Formulation of
Manipulator Dynamics and a Comparative Study of
Dynamics Formulation Complexity", IEEE Trans. on
Systems, Man and Cybernetics Yo. 10, No. 11, pp. 730-736,
Nove., 1980.

6) Kazerooni, H., "Human Machine Interaction via the
Transfer of Power and Information Signals", IEEE
International Conference on Robotics and Automation, May
1989, Scottsdale, Arizona, pp. 1632-1642.

7) Kazerooni, H., "Loop Shaping Design Related to LQG/LTR for
SISO Minimum Phase Plants", International Journal of
Control, Volume 48, Number 1, July 1988.

8) Kazerooni, H., Tsay, T. I., "Stability Criteria for Robot
Compliant Maneuvers", In proceeding of. the IEEE
International Conference on Robotics and Automation,
Philadelphia, PA, April 1988.

9) Kazerooni, H. "Design ~nd Analysis of the Statically
Balanced Direct Drive Manipulator", IEEE Control System
Magazine, Volume 9, Number 2, February 1989.

10) Kazerooni, H., Sheridan,T. B., Houpt, P. K., "Robust
Compliant Motion for Manipulators", IEEE J. of Robotics and
Automation, Yo. 2, No.2, June 1986.

11) Lehtomaki, N.A., Sandell, N.R., Athans, M., "Robustness
Results in Linear-Quadratic Gaussian Based Multivariable
Control Designs", IEEE Trans. on Auto. Control, Vol. AC-26,
No.1, pp. 75-92, February 1981.

12) Makinson, B. J., "Research and Development Prototype for
Machine Augmentation of Human Strength and Endurance,
Hardiman I Project", Report S-71-1056, General Electric
Company, Schenectady, NY, 1971.

13) Merritt, H. E., "Hydraulic Control Systems", John Wiley &
Sons, Inc., 1967.

14) Mizen, N. J., "Preliminary Design for the Shoulders and
Arms of a Powered, Exoskeletal Structure", Cornell
Aeronautical Laboratory Report VO-1692-V-4, 1965.

15) Mosher,R.S., "Force Reflecting Electrohydraulic
Servomanipulator", Electro-Technology, pp. 138, Dec. 60.16) Mosher, R. S., " Handyman to Hardiman", SAE Report

670088.
17) Vidyasagar, M., "Nonlinear Systems Analysis", Prentice-

Hall. 1978.


